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Abstract

Hartigan’s method for k-means clustering holds
several potential advantages compared to the clas-
sical and prevalent optimization heuristic known
as Lloyd’s algorithm. E.g., it was recently shown
that the set of local minima of Hartigan’s algorithm
is a subset of those of Lloyd’s method. We de-
velop a closed-form expression that allows to estab-
lish Hartigan’s method for k-means clustering with
any Bregman divergence, and further strengthen
the case of preferring Hartigan’s algorithm over
Lloyd’s algorithm. Specifically, we characterize a
range of problems with various noise levels of the
inputs, for which any random partition represents a
local minimum for Lloyd’s algorithm, while Har-
tigan’s algorithm easily converges to the correct
solution. Extensive experiments on synthetic and
real-world data further support our theoretical anal-
ysis.

1 Introduction
The goal of cluster analysis is to partition a given set of data
items into clusters such that similar items are assigned to the
same cluster whereas dissimilar ones are not. Perhaps the
most popular clustering formulation is K-means in which
the goal is to maximize the expected similarity between data
items and their associated cluster centroids. The classical op-
timization heuristic forK-means is Lloyd’s algorithm [Lloyd,
1982; MacQueen, 1967; Forgy, 1965]. In this algorithm, one
typically starts with a random partition of the data and then
proceeds by alternating between two steps – an assignment
step where each item is assigned with the cluster represented
by the nearest centroid; and an update step in which the clus-
ters’ centroids are updated given the partition obtained by the
previous step. This algorithm is proven to converge in the
sense that after a finite number of such trials the assignments
of the data items no longer change.

A well known problem with this procedure is that it is sen-
sitive to the initial partition being used. Namely, the algo-
rithm typically converges to a fixed-point that represents only
a local minimum in the space of all possible partitions, and
various heuristics have been proposed in the literature to ad-
dress this issue (cf. [Bradley and Fayyad, 1998]). However,

Telgarsky and Vattani [Telgarsky and Vattani, 2010] have re-
cently highlighted that the problem of converging to a local
minima is less severe if an alternative optimization heuris-
tic – termed Hartigan’s method in [Telgarsky and Vattani,
2010] – is being used. Specifically, in this alternative heuris-
tic, a single data item is being examined and then optimally
re-assigned by the algorithm [Hartigan, 1975]. Interestingly,
since this algorithm takes into account the motion of the cen-
troids resulting from the re-assignment step, a data item is not
always assigned with the cluster with the nearest centroid. As
a result, the set of local minima of Hartigan’s algorithm is a
strict subset of those of Lloyd’s method, implying that the al-
gorithm is less sensitive to the choice of the initial random
partition of the data [Telgarsky and Vattani, 2010].

Here, we start by demonstrating how Hartigan’s method
can be easily applied with any Bregman divergence [Breg-
man, 1967]. Our formulation includes as special cases Harti-
gan’s method with the Euclidean norm that was analyzed in
detail in [Telgarsky and Vattani, 2010], as well as the sequen-
tial Information Bottleneck (sIB) algorithm, originally pro-
posed in [Slonim, 2002]. In addition, we provide a systematic
quantitative estimation of the difference between Hartigan’s
algorithm and Lloyd’s algorithm. In particular, we consider
the classical example of data generated by a mixture of Gaus-
sians as well as several real world data. In all cases we char-
acterize the number and quality of the local minima obtained
by both algorithms as a function of various parameters of the
problem. Our results reveal a substantial difference between
both algorithms. Specifically, we characterize a wide range
of problems for which any initial partition represents a lo-
cal minimum for the Lloyd’s algorithm. Nonetheless, for the
same problems, the number of local minima associated with
Hartigan’s algorithm is small, and furthermore, these local
minima correspond well with the true partition of the data.

2 Lloyd’s Algorithm

Let X denote a finite set of data items, X = {x1, ..., xn},
each represented by some vector, vx ∈ Rm. Let C =
{c1, ..., cK} denote some partition of X into K disjoint
nonempty subsets, or clusters, and let n(c) denote the number
of data items assigned with a cluster c. The standard quality
measure of the partition C, known as the K-means formula-
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tion [MacQueen, 1967], is given by the mean distortion,

D(C) def
=

1

n

∑
c

∑
x∈c

d(vx, vc) , vc
def
=

1

n(c)

∑
x∈c

vx . (1)

where d(·, ·) is a pre-specified non-negative distortion mea-
sure, and every c ∈ C is represented by a centroid vector in
vc ∈ Rm. Given K < n, the goal is to find a partition C into
K clusters that minimizes D(C).

The most popular optimization heuristic to this end is
Lloyd’s algorithm [Lloyd, 1982; MacQueen, 1967; Forgy,
1965]. In most applications, d(vx, vc) = 1

2‖vx− vc‖
2, where

‖ · ‖ denotes the Euclidean norm, and one starts from some
random partition of the data into K clusters. The algorithm
is then an iterative two-step process. In the assignment step,
each data item is assigned with the cluster that corresponds
to its nearest centroid. In the update step, the centroids are
updated through (1), based on the new partition. It is easy to
verify that each of these steps can only reduce D(C). Since
D(C) ≥ 0 the algorithm is guaranteed to converge to a sta-
ble fixed-point that corresponds to a local minimum of the
expected distortion.

An important feature of Lloyd’s algorithm is that the pa-
rameters’ updates are performed in batch mode; first, all the
assignments are re-estimated and only then all centroids are
updated. Hence, we will refer to this classical algorithm as
batch K-means and to its fixed-point partitions as batch local
minima.

A known variant of this algorithm is the online K-means
(cf. [Har-peled and Sadri, 2005]). In this variant, in each
trial a single item is selected at random and re-assigned to the
cluster with the nearest centroid; next, the relevant centroids
are updated accordingly. Clearly, this algorithm as well con-
verges to a fixed-point partition that may depend on the initial
partition being used and on the particular item selections per
trial. We will henceforth term the fixed-point partitions of this
algorithm as online local minima.
Observation 2.1 C is a batch local minimum or an online lo-
cal minimum, if and only if ∀ x ∈ X , ∀c ∈ C, d(vx, vc(x)) ≤
d(vx, vc) .

Corollary 2.2 For any given data, the set of batch local min-
ima is identical to the set of online local minima.

Thus, we will henceforth refer to these local minima simply
as Lloyd’s local minima. Notice, that the above corollary
do not imply that for a given initial partition the batch al-
gorithm and the online algorithm converge to the same local
minimum. In fact, the online algorithm is more stochastic in
nature since for a given initial partition it may converge to
various local minima, depending on the random selections it
performs per trial.

3 Hartigan’s Method
Hartigan’s algorithm is an alternative heuristic to Lloyd’s al-
gorithm, also aiming to optimize theK-means cost function –
(1). The basic idea of this algorithm is rather simple. Given a
partition C, the algorithm first draws at random a single item,
x, out of its cluster; e.g., if x ∈ c, after drawing x from c it
is represented as a singleton cluster with centroid vx, while
vc is updated accordingly as the average vx′ taken across all

x′ ∈ c, x′ 6= x. Next, the algorithm finds the optimal cluster
c∗ to which x should be re-assigned, in terms of minimiz-
ing D, assigns x with c∗, and updates vc∗ accordingly. By
construction, in each trial the algorithm can only decrease D,
hence it is guaranteed to converge to a fixed-point partition
after a finite number of trials. In the following we refer to
these fixed-point partitions as Hartigan’s local minima.

To gain further intuition we examine the impact overD due
to merging the singleton cluster consisted of x to one of the
K clusters. Let c+ denote the cluster c after the addition of
x. Then, obviously, x /∈ c, x ∈ c+, n(c+) = n(c) + 1 , and
it is easy to verify that the increment in D due to this merger
is given by

∆D(x, c) =
1

n
d(vx, vc+) + (2)

1

n

∑
x′∈c

(d(vx′ , vc+)− d(vx′ , vc)) .

Thus, ∆D(x, c) is consisted of a trade-off between two terms.
First, we would like to assign x to c such that d(vx, vc+) will
be minimized; however, at the same time, we would like the
resulting new centroid, vc+ , to remain a relatively good repre-
sentative for all x′ ∈ c, namely to minimize the second term
in (2).

To summarize, although reminiscent of online K-means,
Hartigan’s clustering is different in two important aspects.
First, when considering to what cluster to re-assign x, one
first draws x out of its original cluster, c(x), and updates vc(x)
accordingly. Thus, while in online (and batch) Lloyd’s algo-
rithm there is some bias in favor of re-assigning x back to
c(x) – since the examined vc(x) includes the impact of vx
– in Hartigan’s algorithm this bias vanishes. Second, Harti-
gan’s algorithm considers a wider horizon of the impact of
assigning x to c ∈ C, as it not only considers how similar
is x to c, but further takes into account the general impact
over the cost function, D, that will result from updating vc to
vc+ . Thus, Hartigan’s algorithm will assign x to c such that
D will be minimized, and as implied by (2), this is not neces-
sarily the cluster with the nearest centroid. A recent insight-
ful theoretical analysis of the difference between Hartigan’s
algorithm and Lloyd’s algorithm is given in [Telgarsky and
Vattani, 2010].

4 Hartigan’s Method with Bregman
Divergence

A possible concern regarding Hartigan’s algorithm is that its
potential advantages come at the cost of higher complexity.
In each trial the algorithm need to calculate ∆D(x, c) for all
c ∈ C; assuming d(·, ·) is calculated in O(m) and using the
straightforward derivation in (2), we find that the complexity
of calculating each ∆D(x, c) isO(n(c)·m), hence the overall
complexity of a single trial is O(n · m). However, as we
show next, for an important family of distortion measures,
the complexity of a single trial can be reduced to O(K ·m),
which is identical to the complexity of a single trial in the
online variant of Lloyd’s algorithm.

Recall that each trial of Hartigan’s algorithm starts by
drawing a particular x out of its cluster, c(x) and updating
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vc(x) accordingly. Denoting by c(x)− the cluster c(x) after
x’s removal, it is easy to verify that

vc(x)− =
nc(x)vc(x) − vx
nc(x) − 1

, (3)

hence, this part can be computed in O(m). The trial is com-
pleted by merging x to a cluster c and updating vc accord-
ingly. Denoting by c+ the cluster obtained after adding x to
c, it is again easy to verify that the updated centroid is given
by

vc+ =
n(c)vc + vx
n(c) + 1

, (4)

hence, this part as well can be computed in O(m). Thus, the
remaining question is how to efficiently identify the cluster
c∗ to which x should be assigned such that D will be min-
imized. In our context, this maps to calculating ∆D(x, c)
for all c ∈ C. Next, we provide a closed-form expression
for ∆D(x, c) for any distortion measure that corresponds to
a Bregman divergence [Bregman, 1967].
Definition 4.1 Let Y ⊂ Rm be some closed, convex set. Let
F : Y → R be a strictly convex function. Then, for any
v, w ∈ Y the Bregman divergence [Bregman, 1967] is defined
as1

dF (v|w)
def
= F (w)− [F (v) +∇wF (w) · (v − w)] . (5)

Thus, dF measures the difference between F and its first-
order Taylor expansion about w, evaluated at v. Although dF
does not necessarily satisfy the triangle inequality nor sym-
metry, it is always non-negative and equals to zero if and
only if its two arguments are identical. The Bregman di-
vergence generalizes some commonly studied distortion mea-
sures. For example, for F (v) = 0.5‖v‖2 we have dF (v|w) =
0.5‖v − w‖2, namely the squared Euclidean distance. Alter-
natively, if Y = Rm

+ and F (v) =
∑m

r=1 v
(r) log(v(r)), then

dF (v|w) is the unnormalized KL divergence, dF (v|w) =∑m
r=1(v(r) log v(r)

w(r) +w(r)− v(r)). In the special case where
Y is the m-th dimensional simplex, v and w are normal-
ized distributions, F (v) is Shannon entropy, and dF (v|w) re-
duces to the conventional KL divergence [Cover and Thomas,
2006].
Proposition 4.2 Given the above notations, if d(·, ·) is a
Bregman divergence, then

∆D(x, c) =
1

n
d(vx, vc+) +

n(c)

n
d(vc, vc+) . (6)

Thus, the effect of merging x to c is related not only to the
similarity of vx and vc+ , but also to the induced change on
vc, as quantified by the second term in (6) (in this context, see
also [Telgarsky and Dasgupta, 2012]). In particular, using (6),
the complexity of computing ∆D(x, c) is O(m), as required.
A Pseudo-code for a general Hartigan’s algorithm is given in
Fig. 1.

A few special cases are worth considering in detail. First,
if Y is the simplex of Rm and dF (v|w) is the KL divergence,

1In principle, a Bregman function F needs to fulfill some addi-
tional technical constraints which we omit here to ease the presenta-
tion (see [Censor and Zenios, 1997] for details).

Input
data items: X = {vx1 , ..., vxn} ⊂ Rm,K.

Output
A Hartigan’s fixed point partition of X into K clusters.

Initialization
C ← random partition of X into K clusters.

Main Loop
While not Done

Done← TRUE .
Scan X by some random order and ∀x ∈ X

Remove x from c(x) and update vc(x).
c∗ = argminc∈C∆D(x, c).
If c∗ 6= c(x), Done← FALSE.
Merge x into c∗ and update vc∗ .

Figure 1: Pseudo-code of the Hartigan’s algorithm. If d(·, ·) is a
Bregman divergence, ∆D(x, c) can be computed efficiently via (6);
otherwise, ∆D(x, c) can be computed directly from (2).

the derivation above yields precisely the sequential Informa-
tion Bottleneck (sIB) algorithm, that was originally proposed
in the context of document clustering [Slonim et al., 2002;
Slonim, 2002]. However, since dF can be applied to un-
normalized nonnegative vectors in Rm, our derivation further
yields an extension of the sIB algorithm to cluster unnormal-
ized vectors, which we intend to explore in future work. An-
other important special case emerges when dF (v|w) is the
squared Euclidean distance, d(vx, vc) = 0.5‖vx − vc‖2. In
this case Proposition 4.2 reduces to

∆D(x, c) = 0.5
n(c)

n(n(c) + 1)
‖vx − vc‖2 , (7)

which is precisely the algorithm proposed in [Hartigan,
1975], that was more recently analyzed in detail in [Telgar-
sky and Vattani, 2010]. Due to the wide use of this distortion
measure in cluster analysis, in the remaining of this work we
focus on this special case.

5 Theoretical Analysis
For completeness, we first repeat Theorem 2.2 from [Telgar-
sky and Vattani, 2010].
Theorem 5.1 (Telgarsky-Vattani) For any given data X =
{x1, x2, . . . , xn} the set of Hartigan’s local minima is a –
possibly strict – subset of the set of Lloyd’s local minima.

Corollary 5.2 Lloyd’s algorithm can never improve a Har-
tigan’s local minimum while Hartigan’s algorithm might im-
prove a Lloyd’s local minimum.

Proof: The first part is proven by Theorem 5.1. The second part
may be demonstrated using a simple example. Consider the fol-
lowing one-dimensional data items {−5, 0, 0, 0, 0, 0, 1}. For these
data, the partition C(1) = {{−5, 0, 0, 0, 0, 0}, {1}} is a Lloyd’s lo-
cal minimum, with associated cost D ≈ 1.49. However, C(1) is not
a Hartigan’s minimum. Specifically, drawing {−5} out of its clus-
ter, the Hartigan’s algorithm will assign it to the other cluster to ob-
tain the partition C(2) = {{0, 0, 0, 0, 0}, {−5, 1}}with an improved
cost of D ≈ 1.29; next, the Hartigan’s algorithm can re-assign {1}
to end up with a partition C(3) = {{1, 0, 0, 0, 0, 0}, {−5}} with
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(a) (b) (c)

Figure 2: (a) Normalized number of Lloyd’s and Hartigan’s local minima as a function of m. (b) Online Lloyd’s vs. Hartigan. Normalized
cost as a function of m. Reported values are averaged over all possible initial partitions and all possible choices that can be made by each
algorithm. (c) Probability to find the global minimum as a function of m. The probability is measured with the initial partition chosen with
uniform distribution and the online and Hartigan’s choices are taken randomly with uniform distribution.

a cost of D ≈ 0.06, which is the globally optimal partition in this
example.2

The example outlined in the proof of Corollary 5.2 demon-
strates another important difference between Hartigan’s algo-
rithm and Lloyd’s algorithm. Specifically, at each iteration
Lloyd’s algorithm effectively partitions the samples using a
Voronoi diagram according to current centroids. Thus it is re-
stricted to solely explore partitions that correspond to Voronoi
diagrams, and is prohibited from crossing through partitions
such as C(2) which allows the Hartigan’s algorithm to escape
the local minimum. A detailed theoretical analysis in this
context is given in [Telgarsky and Vattani, 2010]. In addition,
since the number of Hartigan’s minima is always bounded by
the number of Lloyd’s minima, it is reasonable to expect that
the Hartigan’s algorithm will typically be less sensitive to dif-
ferent initializations, namely, more stable with respect to the
initial conditions. Moreover, given the output of Lloyd’s al-
gorithm, one can only gain by using it as the input to the
Hartigan’s algorithm, while the other direction is vain.

Given the above qualitative observations, we now outline
two results that provide additional quantitative insights. In
particular, we show that there exists a wide range of settings
where any possible partition C is a local minimum of Lloyd’s
algorithm, rendering this algorithm useless for those settings.
The crux of the analysis is based on Observation 2.1. In or-
der to improve a partition C Lloyd’s algorithm must find an
element x such that the distance ||vx − vc(x)||2 is larger than
||vx − vc||2 for some cluster c. However, vc(x) is biased to-
wards vx since the calculation of the centroid takes vx into
account, thus vx tends to be closer to its own cluster centroid
vc(x) than to any other centroid.

Lemma 5.3 Let A = {a1, a2, . . . , an1
} and B =

{b1, b2, . . . , bn2
} be two sets of scalar values sampled i.i.d.

from some distribution F with variance σ2. Let va and vb
be their respective mean values. If S is the random vari-
able defined by S = (a1 − vb)2 − (a1 − va)2, then E(S) =

2Additional examples can be generated and illustrated via a
Web interface provided by Telgarsky and Vattani in this context at
http://cseweb.ucsd.edu/∼mtelgars/htv/.

( 1
n1

+ 1
n2

)σ2.

Proof: Considering the random variable a1 − vb, since vb is the
mean of i.i.d. samples out of F and a1 is independently sampled
from F , we have E(a1 − vb) = 0 and V ar(a1 − vb) = (1 +
1
n2

)σ2. Thus E((a1 − vb)
2) = V ar(a1 − vb) = (1 + 1

n2
)σ2.

Similar arguments hold for a1 − va, but first let us rewrite it as
n1−1
n1

(a1 − v′a) where v′a is the mean of A excluding a1. Therefore
v′a is independent of a1, and E(a1 − v′a) = 0 and V ar(a1 − v′a) =
(1 + 1

n1−1
)σ2. Simple algebra yields E((a1 − va)2) = V ar(a1 −

va) = (1− 1
n1

)σ2. Thus we may conclude E(S) = ( 1
n1

+ 1
n2

)σ2.

Theorem 5.4 Let v1, v2, . . . , vn be n data items such that
vi ∈ Rm1+m2 . Let us assume that for each vi the first m1

components were drawn from some multivariate distribution
F1 while each of the remaining m2 components were drawn
i.i.d. from some univariate distribution F2 with variance σ2.
Let C be a partition of the n vectors chosen with uniform dis-
tribution over all possible partitions. If LC denotes the event
that C is a Lloyd’s local minimum, then P (LC) → 1 with
m2 →∞.

Proof: Let us randomly pick a pair of clusters c1 and c2 with cen-
troids vc1 and vc2 . Let vx be a randomly chosen vector in c1. We
now explore the probability of vx being closer to vc2 than to vc1 by
investigating the random variable S = ||vx− vc2 ||2−||vx− vc1 ||2.
Let Sj be the contribution of the j’th component of each vector to
S, i.e., Sj = (vjx − vjc2)2 − (vjx − vjc1)2 and S =

∑m1+m2
j=1 Sj .

The contribution of the first m1 components,
∑m1

j=1 Sj is a random
variable with some distribution derived from F1, with some expec-
tation µ1 and variance σ2

1 . All the remaining Sj’s for j > m1 are
i.i.d. variables with some expectation µ2 and variance σ2

2 . From
Lemma 5.3, for j > m1 we have E(Sj |C) = ( 1

n(c1)
+ 1

n(c2)
)σ2,

and since 1
n(c1)

+ 1
n(c2)

> 2
n

we obtain µ2 >
2
n
σ2. From this it

follows that E(S) > µ1 + m2
2
n
σ2 and V ar(S) = σ2

1 + m2σ
2
2 .

The expectation grows faster with m2 than the standard deviation√
σ2
1 +m2σ2

2 . Thus using Chebyshev’s inequality [DeGroot and
Schervish, 2002] the probability P (S < 0) can be made arbitrar-
ily close to 0 for sufficiently large m2. If C is not a Lloyd’s local
minimum then necessarily there exists some vx whose distance to
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(a) (b)

(c) (d)

Figure 3: (a) Number of Lloyd’s batch local minima for different n,m. This number was estimated by testing 1000 randomly chosen
partitions, averaged over 40 samples for each combination of n andm. (b) Normalized Mutual Information between the Hartigan’s algorithm
result and the true partition for different n,m values. Each cell reports the average over 10 runs with randomly chosen initial partitions. (c)
Normalized information values between the minima partitions and the data true labels, as a function of the associated D(C) values, for all
500 runs over the EachMovie data. (d) Normalized information values between the minima partitions and the data true labels, as a function
of the associated D(C) values, for all 500 runs over the Multi101 data.

another cluster’s centroid is smaller than its own. Thus the prob-
ability of such an event is bounded by n · K · P (S < 0), which
concludes the proof.

We now proceed to show that this potential problem of lo-
cal minima overflow cannot occur for Hartigan’s algorithm.
Proposition 5.5 proves that the frequency of Hartigan’s min-
ima among all possible partitions is bounded by 1

K , irrespec-
tive of the number of dimensions, m.

Proposition 5.5 Let C be the set of all possible valid parti-
tions of X = {x1, . . . , xn} into 1 ≤ k ≤ K clusters. Then,
if no two partitions have the exact same cost, the number of
Hartigan’s local minima is bounded by |C|K .

Proof: Let R ⊂ C×C be a binary relation such that (Ci, Cj) ∈ R
if and only if Ci and Cj are identical except in the cluster assign-
ment of x1, i.e., the Hartigan’s algorithm may cross from Ci to Cj
by re-assigning x1. Clearly this is an equivalence relation therefore
it partitions C into equivalence classes. An equivalence class may
contribute at most one local minimum since we assume no two par-
titions have the same cost. Most equivalence classes size is exactly

K. However an equivalence class may be smaller. This may only
occur if all its partitions have less thanK clusters. However, a parti-
tion with less thanK clusters cannot be a Hartigan’s minimum since
it must have a cluster with at least 2 elements of which one can be
extracted to form a new singleton cluster with reduced cost. Thus,
since only equivalence classes of size K contribute Hartigan’s min-
ima and each contributes at most one, the total number of Hartigan’s
minima is bounded by |C|

K
.

6 Experimental Results
Systematic Exploration of Toy Examples: We start with
a synthetic toy example for which the space of all possible
partitions can be explored systematically. Specifically, in this
example n = 16, K = 2, and m = 1, 2, . . . , 50. The
16 data points are sampled as follows. For the first dimen-
sion, 8 points are sampled from a normal distribution with
µ1 = −1, σ = 1, while the remaining 8 points are sampled
from a normal distribution with µ = 1, σ = 1. For each of
the remaining m − 1 dimensions, all 16 points are sampled
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from a normal distribution with µ = 0, σ = 1. Hence, in-
creasing m amounts to adding noise features, and according
to Theorem 5.4 is expected to increase the number of Lloyd’s
minima. For each m value we drew 100 samples of 16 points
each, and for each of these samples we explored the entire
space of all 216 = 65, 536 partitions, where for simplicity
permutations of the same partition and partitions with empty
clusters were not removed.

In Fig. 2(a) we depict for each value of m the observed
number of Lloyd’s and Hartigan’s local minima, normalized
by the total number of partitions, 65, 536. As expected, the
number of Lloyd’s local minima is increasing as m increases,
getting close to covering the entire partition space. Note that
due to Corollary 2.2 these results apply to Lloyd’s online al-
gorithm as well. In contrast, the number of Hartigan’s local
minima seems to converge to a small constant.

In Fig. 2(b) we evaluate the clustering results using the
cost function. We executed each of the algorithms until it
converged and measured the cost of the resulting partition,
normalized by the cost of the global minimum. We repeated
this process using every possible partition as a starting point
to obtain an average cost. For Lloyd’s online and Hartigan’s
algorithms, which allow multiple possible steps in each itera-
tion, we further averaged over all possible choices. The error
bars in the plot represent the standard deviation of this result
when repeated 100 times for different data samples for each
value of m. The graph shows that Hartigan’s algorithm has
a stable and significant advantage in terms of cost over the
online/batch Lloyd’s algorithms, and that it consistently con-
verges to a cost close to the global minimum.

In Fig. 2(c) we explored the probability of reaching the
global minimum. We define this measure as the probabil-
ity of reaching a partition which is a global minimum when
the initial partition is selected with uniform distribution over
all possible partitions and whenever the (online Lloyd’s or
Hartigan’s) algorithm allows multiple choices, a particular
one is selected randomly with uniform distribution. The er-
ror bars again represent the standard deviation for 100 dif-
ferent data sets for each m. Evidently, even in the most dif-
ficult case considered the Hartigan’s algorithm has probabil-
ity larger than 0.5 to reach the global minimum in a single
run, while the increasing number of Lloyd’s local minima
shown in Fig. 2(a), swiftly blocks the batch/online Lloyd’s
algorithms from reaching it.

Probabilistic Exploration of Larger Synthetic Examples:
We adopted a different simulation strategy to explore ad-

ditional synthetic examples with larger n and m values. The
data samples were drawn as in the previous sub-section, ex-
cept for the first dimension µ = −5 for the first n/2 data
points and µ = 5 for the remaining n/2 data points. We
have tested the domain of n = 10, 20, . . . , 400, m =
100, 200, . . . , 4000, K = 2, drawing 40 data sets for each
(n,m) combination. In order to cope with these large n val-
ues we estimated the number of local minima instead of di-
rectly counting them. This was done by randomly choos-
ing 1000 partitions with uniform distribution and counting
how many of them correspond to Lloyd’s minima and/or to
Hartigan’s minima. Fig. 3(a) depicts the average number of
Lloyd’s local minima thus found for every combination of n

and m. As can be seen, the result was 1000 out of 1000 for a
large part of the domain. Since the 1000 partitions were cho-
sen with repetitions, this can be viewed as 1000 samples of
a Bernoulli random variable with parameter p, denoting the
frequency of Lloyd’s minima. The binomial distribution can
be used to calculate a confidence interval for p. For the result
of 1000 the 99% confidence interval for p is 0.9947 < p < 1.
In conjunction with Theorem 5.4 we conclude that for these
values of n and m almost all partitions are Lloyd’s local min-
ima. In contrast, the number of Hartigan’s local minima was
dramatically lower. For n = 10 there were an average of
4.81 Hartigan’s local minima found out of 1000 partitions
(and specifically 6.5 for m = 4000). For n = 20 the ob-
served average dropped to 0.012 out of 1000 and for n > 20
no further Hartigan’s local minima were found.

We then measured the quality of the results of the Harti-
gan’s algorithm in those cases. This was done by executing it
10 times until convergence, starting with random initial par-
titions. We measured the dependency between the obtained
Hartigan’s minimum and the true partition of the two Gaus-
sians from which the data was sampled by calculating the
normalized mutual information [Cover and Thomas, 2006]
between both partitions, where a result of 1.0 means the two
are identical. The average information results are depicted in
Fig. 3(b). For the most part of this graph the resulting av-
erage is a solid 1.0, including a large overlap with the range
where the number of Lloyd’s local minima is a solid 1000
out of 1000. Thus, while batch/online Lloyd’s algorithms ut-
terly fail, the Hartigan’s algorithm consistently finds the true
solution at once.

Results for real-world data: Finally, we examine the per-
formance of the algorithms on several real world data. These
include 9 document subsets of the 20NG corpus and their as-
sociated topic labels [Lang, 1995; Slonim et al., 2002]; the
SP500 data that include the day-to-day fractional changes in
price of the stocks in the Standard and Poor’s 500 list dur-
ing 2003, and their associated Industry Classification (GICS)
labels [Slonim et al., 2005]; the EachMovie data that in-
clude movie ratings provided by many viewers and the asso-
ciated genre labels [Slonim et al., 2005], where we focused
on movies labeled to a single genre, and the 5000 viewers that
rated the maximal number of movies; and theOlivettiFaces
data that include 400 images of 40 different people in dif-
ferent poses, available at http://cs.nyu.edu/ roweis/data.html.
The details of all datasets are described in Table 1(a). In all
cases we used standard pre-processing that included using the
tf-idf counts representation for the text data, and further nor-
malizing each input vector to 1 under the Euclidean L2 norm.

For each of these datasets we executed the Lloyd’s batch
and online algorithms, as well as the Hartigan’s algorithm. In
all runs we used 500 different random partitions as the initial
partitions and executed the three algorithms until they con-
verge to a local minimum. In Table 1(b) we report the average
final D(C) values obtained per algorithm. In addition, for the
Lloyd’s batch and online algorithms we report in parenthesis
the− log10(p) score, where p is the p-value of a t-test measur-
ing the statistical significance of the difference between the
mean D(C) values associated with Lloyd’s batch and online
minima to the mean D(C) value associated with the Harti-
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Table 1: (a) Data sets details. (b) Average D(C) values associated with Lloyd’s batch (left column) and online (middle column) minima, and
Hartigan’s minima (right column). Results are averaged over 500 different runs with randomly selected initial partitions. In parenthesis we
report −log10(p) where p is the p-value of the t-test measuring the significance of the difference between the mean D(C) value associated
with the Lloyd’s batch/online minima to the mean D(C) value associated with the Hartigan’s minima. An INF value indicates p was below
Matlab precision. (c) Average normalized information values between the obtained Lloyd’s batch (left) and online (middle) minima, and
Hartigan’s (right) minima, and the true labels of the clustered data. Results are averaged over 500 different runs with randomly selected initial
partitions. In parenthesis we report −log10(p) where p is the p-value of the t-test measuring the significance of the difference between the
mean normalized information value associated with the Lloyd’s batch/online minima to the mean normalized information value associated
with the Hartigan’s minima.

(a)
DATA SET TYPE n m K
Binary1 TEXT 500 2000 2
Binary2 TEXT 500 2000 2
Binary3 TEXT 500 2000 2
Multi51 TEXT 500 2000 5
Multi52 TEXT 500 2000 5
Multi53 TEXT 500 2000 5
Multi101 TEXT 500 2000 10
Multi102 TEXT 500 2000 10
Multi103 TEXT 500 2000 10
SP500 STOCKS 487 273 10
EachMovie RATINGS 263 5000 10
oFaces FACE IMAGES 400 4096 40

(b)
〈D(C)(Lb)〉 〈D(C)(Lo)〉 〈D(C)(H)〉
0.4788 (124) 0.4770 (1.2) 0.4768
0.4790 (89) 0.4781 (0.8) 0.4780
0.4761 (14) 0.4753 (0.7) 0.4754
0.4775 (250) 0.4746 (21) 0.4742
0.4763 (200) 0.4737 (12) 0.4733
0.4751 (171) 0.4728 (10) 0.4725
0.4765 (INF) 0.4668 (258) 0.4649
0.4781 (INF) 0.4674 (186) 0.4660
0.4780 (INF) 0.4675 (249) 0.4655
0.2824 (37) 0.2814 (10) 0.2804
0.2845 (INF) 0.2837 (294) 0.2788
0.0114 (INF) 0.0108 (196) 0.0105

(c)
〈MI(Lb)〉 〈MI(Lo)〉 〈MI(H)〉
0.170 (0.6) 0.182 (0.1) 0.180
0.175 (8.6) 0.247 (0.1) 0.244
0.242 (5.5) 0.268 (1.1) 0.278
0.339 (284) 0.561 (58) 0.631
0.334 (299) 0.537 (54) 0.598
0.422 (217) 0.601 (40) 0.659
0.100 (INF) 0.476 (21) 0.498
0.085 (INF) 0.488 (76) 0.531
0.072 (INF) 0.468 (32) 0.495
0.580 (120) 0.628 (0.4) 0.630
0.236 (50) 0.226 (101) 0.257
0.741 (INF) 0.784 (2.7) 0.786

gan’s minima, respectively. Evidently, the Hartigan’s minima
are typically associated with significantly lower D(C) val-
ues, especially compared to Lloyd’s batch algorithm. Fur-
thermore, at least for the text datasets, the gap monotonically
increases with K. To gain further perspective regarding the
quality of the obtained minima, in Table 1(c) we report the av-
eraged normalized mutual information between the obtained
minima and the true partition of the data, according to the as-
sociated objective labels, that were not used during the clus-
tering process. The Hartigan’s minima are typically associ-
ated with partitions that better capture the data structure as
reflected by the objective labels. This is further depicted in
Fig. 3(c) and Fig. 3(d), where similar results were obtained
for the other datasets.

7 Discussion
In [Banerjee et al., 2005] it was shown that the classical
Lloyd’s K-means algorithm can be defined and analyzed for
any Bregman divergence. Here, we derived Hartigan’s K-
means for any Bregman divergence. Our derivation cap-
tures as special cases Hartigan’s algorithm with the Euclidean
norm [Hartigan, 1975; Telgarsky and Vattani, 2010] as well
as the sIB algorithm [Slonim et al., 2002].

We characterize a range of problems for which any random
partition will represent a local minimum for Lloyd’s algo-
rithm while Hartigan’s algorithm easily converges to the true
solution. Our experimental results, e.g., Fig. 3(a), provide
additional empirical evidence regarding the clear relation be-
tween the problem parameters and the associated number of
Lloyd’s minima and Hartigan’s minima, in accord with The-
orem 3.1 in [Telgarsky and Vattani, 2010]. In addition, in
Proposition 5.5 we provide an upper bound over the number
of Hartigan’s minima for any given data. Overall, these re-
sults suggest that in the presence of many irrelevant features,
relying on Hartigan’s algorithm might be an attractive alterna-
tive to trying to learn the weights of all different dimensions
as done in many previous works (e.g., [Huang et al., 2005]).

The theoretical and empirical results of the current work
and [Telgarsky and Vattani, 2010] highlight important po-
tential advantages of Hartigan’s algorithm over Lloyd’s algo-
rithm for K-means clustering. Since the complexity of both
algorithms is similar, and since both are equally trivial to im-
plement, one might wonder why is it that Lloyd’s algorithm
is so prevalent while Hartigan’s algorithm is scarcely used in
practice. Perhaps it is time for a change.
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